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Abstract

A dimensionless parameter 1, is introduced for the correlation of the heat transfer in natural convection induced by
a constant wall heat flux. This dimensionless parameter depends on the Prandtl number, Pr, and the modified Rayleigh
number, Ra*, as I1, ~ Ra*/(1 + Pr~'). The development of I1, is based on physical arguments and allows the use of a
single heat transfer correlation over the entire Prandtl number range. Dimensional arguments in terms of the laminar
boundary layer and turbulent microscale concepts lead to a Nu ~ IT IQ/ > and Nu ~ IT IQ/ ¢ dependence for the laminar and
turbulent heat transfer, respectively. Comparison of these correlations with existing published data shows a good
agreement. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection from a vertical plate with con-
stant wall heat flux, ¢y, has been the subject of much
research over the last few decades due to its relevance to
a variety of industrial applications and naturally oc-
curring processes, such as electronics cooling and solar
heating. Numerous attempts have been made to corre-
late the heat transfer from the surface in terms of the
appropriate dimensionless numbers. These correlations
generally relate the Nusselt number, Nu, to the modified
Rayleigh number, Ra* = gfq.¢*/vak, and Prandtl
number, Pr=v/a, with the asymptotic limits of
Nu = f(Ra*) for Pr — oo and Nu = f(Ra*Pr) for Pr — 0.
Though most experiments have focused on air and water
(with Pr ~ 1-10), several attempts have been made over
the years to develop generalized natural convection
correlations that would apply to a range of Prandtl
numbers. Table 1 summarizes some of these correlations
for the laminar and turbulent cases. We will mention a
few here.
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One of the earliest attempts in the laminar case was
that of Sparrow and Gregg [1], who presented an exact
similarity solution of the laminar boundary layer equa-
tions for Prandtl numbers of 0.1, 1, 10 and 100 and
suggested

P2 N\
> erl/57 (1)

Nu=0616( —
! <0.8+Pr

where Gr* = Ra*/Pr is the modified Grashof number.
This correlation was recently validated in an exper-
imental study by Pitman et al. [2] and agreed well in the
range 10> < Gr* <107 with the experimental results of
Goldstein and Eckert [3] for water. Other attempts at
correlating a broad range of Pr numbers include the
work of Churchill and Ozoe [4] and that of Fujii and
Fujii [5], which agreed well with the theoretical work of
Chen et al. [6] on laminar free convection in boundary
layer flows from horizontal, inclined, and vertical flat
plates involving air and water. Other investigators fo-
cused on moderate Prandtl number fluids only. Qureshi
and Gebhart [7] developed a correlation for water at
room temperature (Pr = 6), which agrees well with the
more recent data obtained by King and Reible [§]. For
low Prandtl numbers we note the solution of Chang
et al. [9] using perturbation techniques. Mercury was
also used in a number of experiments, notably the work
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Nomenclature v, V' dissipation scale velocity; laminar velocity
c specific heat Greek symbols e
Co. Cy constants o therma}l diffusivity . .
g gravitational acceleration p cgeﬂ‘ic1ent of volumetric thermal expansion
h convection heat transfer coefficient ? ﬁg{iﬁgﬁi;}/ layer thickness
A mean kinetic energy of velocity fluctuations . L
Ay root mean square of temperature fluctuations ¢ viscous d1§51pat19n
k thermal conductivity €0 thermal dissipation
¢ characteristic length Ny thermal Kolmogorov scale
Gr* modified Grashof number, Gr* = Ra*/Pr f’ © ???g;igii
Nu Nusselt number, Nu = hl/k ) d ylor sca it
P inertial production # kynamlc. VISCOSIty
Py buoyant production v inematic VISCO.Slty . .
2, thermal production Iy natural convectl.on d{mens1.onless number
Pr Prandtl number, Pr — v/ I,  natural convection dimensionless number for
qw imposed wall heat flux zonsj[ant heat flux
Ra Rayleigh number, Ra = gBAT?/va p ensity
Ra®  modified Rayleigh number, Ra* = gfqyl*/vak Subscripts
T temperature 0 thermal
u, U turbulent velocity scale w at wall
Table 1
Laminar and turbulent correlations
Author Correlation

Laminar correlations
Sparrow and Gregg [1]
Goldstein and Eckert [3]
Chang et al. [9]

Julian and Akins [10]
Humphreys and Welty [11]
Colwell and Welty [12]
Churchill and Ozoe [4]
Fujii and Fujii [5]
Qureshi and Gebhart [7]
Martynenko et al. [13]

Turbulent correlations

Vliet and Liu [16]
Miyamoto et al. [18]
Vitharana and Lykoudis [19]

Nu = 0.616[P2/(0.8 + Pr)]'/°GrV/*

Nu = 0.586Gr*Pr'/>, 10> < Gr* < 107, water
Nu = 0.632P237Gr*1/3 low Pr

Nu = 0.196Gr*
Nu = 0.196Gr*
Nu = 023G, 10* < Gr* < 10°, mercury

Nu = 0.726Ra*\/ /[1 + (0.437/Pr)*/16)6/%

Nu = [Pr/(4+ P2 +10P)]' ° Gr P/

Nu = 0.587Ra*'/5, 1.2 x 10° < Ra* < 1.2 x 103, water
Nu/Ra*Pr'® = f(Ra*Pr='1%), low Pr

% 110* < Gt < 10°, mercury

, 106 < Gr* < 10", mercury

0.188

Nu = 0.568Gr P22, 2 x 101 < Gr* < 10'°, water
Nu = 0.104Ra**?"?, 1.5 x 103 < Gr* < 1.7 x 10", air
Nu = 0.064Ra* P'/?, mercury

of Julian and Akins [10], Humphreys and Welty [11],
and Colwell and Welty [12]. More recently, Martynenko
et al. [13] obtained a correlation for low Prandtl num-
bers, which was in agreement with the experimental
results of Ede [14], Julian and Akins [10] and Chang and
Akins [15].

Less results are available in the existing literature for
the turbulent case. Vliet and Liu [16] proposed an em-
pirical correlation for turbulent flow based on their ex-
perimental investigation of natural convection along a
uniformly heated vertical flat plate using water as the
working fluid. The experimental measurements of

Qureshi and Gebhart [7] and Inagaki and Komori [17]
correlated with their results. Turbulent free convection
was investigated for air by Miyamoto et al. [18] and for
mercury by Vitharana and Lykoudis [19].

The correlations mentioned above all show a
Nu = f(Ra*, Pr) dependence; however, the form of the
correlation is not uniform across the studies. A similar
situation exists in the case of natural convection driven
by an imposed temperature difference, AT (e.g., hot
isothermal plate). There, the independent dimensionless
numbers characterizing the natural convection are the
usual Rayleigh and Prandtl numbers, Ra = gBAT/va
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and Pr, respectively. Using arguments based on the
coupling of the momentum and energy equations, a
fundamental dimensionless parameter, IIy ~ Ra/(l+
Pr7!), was recently proposed by Arpaci [20,21] for the
characterization of the heat transfer in buoyancy-driven
flows, i.e., Nu= f(IIy). This parameter appeared pre-
viously in several correlations, such as the boundary
layer solution of Squire [22] and the experimental results
of Catton [23]. However, rather than being a purely
empirical parameter, the existence of ITy as a dimen-
sionless number characterizing buoyancy-driven flows
was derived from physical arguments. The main objec-
tives of the current study are to extend this development
to the case of natural convection along a vertical plate
with constant heat flux and develop heat transfer cor-
relations that would apply to all fluids for laminar and
turbulent flow in terms of the appropriate fundamental
dimensionless number, ITy. In Section 2, dimensional
arguments lead to the development of IT,, followed by a
discussion of laminar and turbulent heat transfer in
terms of ITy. In Section 3 results from new correlations
in terms of I1, are introduced and discussed. Section 4
concludes the study.

2. Dimensional analysis
2.1. A dimensionless number

Starting from the premise that the appropriate,
physically meaningful dimensionless number that char-
acterizes the heat transfer in natural convection flows
must result from arguments based on both the conser-
vation of momentum and thermal energy, Arpact [21]
proposed a dimensionless number which explicitly de-
scribes natural convection driven by a temperature dif-
ference, AT, in terms of Ra = gBAT(*/va and Pr = v/a.
In the development, dimensional arguments were used
to express the dimensionless momentum equation in
terms of characteristic quantities, and to eliminate
velocity, which is a dependent variable in natural
convection, using the thermal energy balance. The
resulting fundamental dimensionless number, ITy ~ Ra/
(1 + P~1), was shown to correlate the heat transfer in
buoyancy-driven flows. The numeral 1 implies an order
of magnitude; it is explicitly replaced by a coefficient Cy,
when the various force balance ratios are converted to
equalities.

In the case of an imposed heat flux, ¢, the temper-
ature difference driving the motion, A7, must be ex-
pressed in terms of g¢,. Consider a control volume
parallel to the vertical plate and let ¢ be a characteristic
length and & the thermal conductivity of the fluid. AT
may be obtained from the energy balance at the wall,
gw ~ kAT /¢, which may be substituted into the dimen-
sionless parameter obtained by Arpact [21] to yield a

generalized dimensionless number composed of inde-
pendent variables only,

- (gﬁ(Iwe}/Vk) (E/OC) -~ gﬁ‘Iw€4/v“k
T T+ (U)(o/0) I+a/v

where the numeral 1 implies an order of magnitude. Eq.
(2) may be rewritten in terms of Pr and
Ra* = gBq.0*/vak as

Ra* Pr
I, ~ ~ Ra* 3
A e (l—i-Pr) ok (3)

: (2)

where I, is the appropriate dimensionless number for
natural convection with an imposed heat flux in any
fluid. This parameter converges towards the proper
Rayleigh—Prandtl combinations in the limits of low and
high Prandtl numbers

lim IT, — Rd*,

lim lim 1o — Ra'Pr, (4)
consistent with the heat transfer dependence in these
limits. Accordingly, a more explicit relation for the
heat transfer in natural convection driven by an im-
posed heat flux, g, is Nu = f(Ilp) for any fluid. This
can bridge the gap between low- and high-Prandtl-
number correlations using a single dimensionless
number. Explicitly,

Ra* Ra*Pr

= = 5
1+C0P1"71 C()-f—PV7 ()

I,

where the coefficient Cy depends on the flow structure
and results from converting the dimensionless force and
energy balances used to develop Eq. (2) to equalities.
Although the existence of Il has never been previously
directly shown, the similarity solution, Eq. (1), devel-
oped by Sparrow and Gregg [1] more than four decades
ago, and recently validated experimentally [2], leads
after replacing Gr* by Ra*/Pr to an expression in terms
of IT 0>

pr N\ Ra'Pr \'°
— o «1/5 — o
Nu 0'616<0.8+Pr> Gr 0'616(0.8+Pr) .
(6)

Here we have used physical arguments to show the ex-
istence of ITy. Next, we extend these arguments to
laminar convection.

2.2. Laminar convection

The following intuitive considerations in terms of the
usual laminar boundary layer concepts illustrate the use
of Il to correlate laminar heat transfer. Consider nat-
ural convection from a vertical plate subject to a con-
stant heat flux, ¢y,. On dimensional grounds the
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momentum balance, integrated over the momentum
boundary layer thickness, J, may be written as
Ap 14 14

g7 ~V 7T VT (7)
showing the balance between the (driving) buoyancy
force and the inertial and viscous forces, per unit mass.
As usual, the viscous diffusion is assumed to be confined
to the viscous boundary layer. Here ¥ is a characteristic
velocity scale, ¢ an integral (geometric) scale, and
Ap/p ~ BAT the heat flux induced density gradient
driving the buoyancy. The -characteristic velocity,
V ~ al/d3, can be obtained by considering the balance
between enthalpy flow and conduction, where the heat
diffusion (conduction) is again confined to the thermal
boundary layer of thickness Jy. Similarly, the energy
balance at the wall,

g~ k5 )
0

yields the induced temperature difference AT. Following
the Squire [22] postulate for buoyancy-driven flows,
assume that 0 ~ Jy in Eq. (7). Rather than suggesting
the equality of these two boundary layer thicknesses,
this assumption postulates the secondary importance of
the difference between 6 and J, for the heat transfer.
This postulate has been well tested in natural convec-
tion, even in cases where J/9y differs considerably from
unity. Using this assumption and substituting the ex-
pressions for ¥ and AT, the momentum balance may be
rearranged as

‘ (1+2) L 9)

52 v vak ’

or, in terms of 1y,

o (1 + i) R 1 (10)
¢ Pr e -

Recalling the definition of the heat transfer coefficient, 7,
at an interface, the heat transfer balance at the wall may
be expressed as kAT /dyp ~ hAT. The Nusselt number
may thus be expressed in terms of the integral and
thermal boundary layer scales as

_h 0 15

Nu—krvéHNHQ. (11)
We thus obtain a general form of the Nusselt number for
laminar natural convection driven by an imposed heat
flux in terms of II,. This equation provides the correct
classical limits Nu ~ Ra™/* and Nu~ (Ra'Pr)'* for
Pr — oo and Pr — 0, respectively. Investigation of this
result in terms of experimental data will be done in
Section 3. Next, we extend the preceding development to
the turbulent case.

2.3. Turbulent convection

The development that follows uses the microscale
concepts first introduced by Arpaci for buoyancy-driven
flows and extends them to flows induced by a constant
wall heat flux. The original development is briefly re-
viewed first.

Following the usual approach, we decompose the
instantaneous turbulent quantities into a temporal mean
(denoted by capital letters) and fluctuations (denoted by
lower-case letters), #; = U; + u; and 0=0+ 0, and as-
sume the mean quantities to be statistically steady. For a
homogeneous pure shear flow, the Reynolds averaged
equations for the mean Kkinetic energy of the velocity
fluctuations, #" = 1/2uu;, reduce to

Py =P+ (—e). (12)

Here 2y in Eq. (12) is the buoyant energy produc-
tion, 2 = —uu;S; is the inertial production, and
€ = 2vsys; is the viscous dissipation of turbulent ki-
netic energy, where S; and s; are the mean and
fluctuating strain rates, respectively. Eq. (12) states
that the buoyant turbulent kinetic production is partly
converted into inertial production and partly into
viscous dissipation. Similarly, the balance for the root

mean square of the temperature fluctuations,
Ky = 1/202, reduces to
@9 = €y, (13)

where 2 = —u;0(00/dx;) and €) = «(90/0x;) (00/dx;)
represent the thermal production and the thermal dis-
sipation, respectively.

On dimensional grounds, assuming S; ~ u/¢ and
00 /0x; ~ 0/¢, Egs. (12) and (13) may be written as

5
3 w2

E@NN%HTZ, (14)
0 0

U—~0—, (15)
R

where u and 6 respectively denote the rms values of
velocity and temperature fluctuations, ¢ is an integral
scale, and 4 and Z, are the kinetic and thermal Taylor
scales, respectively. Invoking the Squire [22] postulate in
Eq. (14) results in a thermal Taylor scale [21]

1 1/6 val 1/6
Jo~ 01+ = —
~e(145) (30)

o2\
_ 3 1/6 [
=071+ Pr) (%) ) (16)

appropriate for natural convection. If instead we re-
interpret Eq. (14) in terms of the dissipation scales #, 7,
and v, we can deduce the thermal Kolmogorov scale [21]
for natural convection flows as
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Fig. 1. Variation of Nu with (a) I1y for the laminar case and (b) IIyr for the turbulent case.

1 1/4 VO(Z 1/4 . O(3 1/4
~ 1T+ =(1+pP)" =
() (5) =oem(5)
(17)

which can be shown to recover the classical Batchelor,
Oboukhov—Corrsin and Kolmogorov scales in the limits
of Pr— oo, 0, and 1, respectively [21]. Given that
Py ~ gPvl depends on velocity, Egs. (16) and (17) ex-
pressed in terms of velocity cannot be the ultimate forms
of the Taylor and Kolmogorov scales. An estimate of
the thermal velocity scale, v, may be obtained from Eq.
(15) expressed in terms of dissipation scales, while the
temperature scale, 0, may be obtained by considering an
energy balance in a layer of thickness #,, i.e.,

0
and ¢y ~k—.
Moy Moy

v~ —

(18)

Substituting Eq. (18) into Eq. (17) yields the thermal
Kolmogorov scale for natural convection induced by an
imposed heat flux,

1 1/4 vok 1/4
~(14+=
o (m) ()

2k \ V4
_ 1+pw/4(_> .
( ) gBqw

(19)

Here again, the numeral 1 indicates an order of magni-
tude. As in the laminar case, the turbulent Nusselt
number may be related to the ratio of the thermal
Kolmogorov and integral length scales as Nu ~ ¢/n,. Eq.
(19) may then be rearranged to provide a general form
of the Nusselt number for turbulent natural convection
driven by an imposed heat flux in terms of I,

1/4

/
Nuw—wl'[Q .

" (20)

3. Results and discussion

In the previous section, dimensional arguments
were used to introduce a fundamental dimensionless
number,

Ra*Pr

=GB (21)

appropriate for correlating natural convection about a
vertical plate subject to a constant heat flux. The heat
transfer may be correlated as

(22)

where n = 1/5 for laminar convection and » = 1/4 for
turbulent convection. Although the values of Cy and C,
must be determined from experimental data, they are
expected to be numerical constants for each case. Using
the experimental and numerical data existing in the lit-
erature, the coefficients Cy and C, were determined using
a general least squares procedure and are:

Co =0.670, C; = 0.630,
Co=0.191, C; =0.219,

Laminar:
Turbulent:

n=1/5,
n=1/4.
(23)

Fig. 1(a) plots the Nusselt number, Nu, versus Il in
the laminar regime. Here II, is defined as
Ra*Pr

HQ‘]_ = m (lamlnar).

(24)
The solid line represents the correlation given by Eq.
(22) with the appropriate values listed in Eq. (23). The
symbols represent laminar experimental and theoretical
results taken from the literature. These data covered a
Prandtl number range of 0.001 < Pr< 1000, i.e., a factor
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of 10° in the Prandtl domain. As can be seen from Fig.
1(a), the data agree well with the new correlation pro-
posed and the parameter II, can indeed be used to
correlate the data. When heat transfer (Nu) values were
not explicitly listed by the authors of the experimental
studies, data points were calculated based on the em-
pirical correlations given by the authors. For this
reason, no attempt is made here to show the deviation
of the proposed correlations from the data. However, a
closer look at Fig. 1(a) indicates that these deviations
are minor and fall within the realm of experimental
uncertainty in measuring or computing the Nusselt
number.

Fig. 1(b) plots the Nusselt number, Nu, versus Il in
the turbulent regime. Here I1, is defined as

Ra*Pr

Hor =401

(turbulent). (25)
The solid line represents the correlation given by Eq.
(22) with the appropriate values listed in Eq. (23).
Good agreement can be seen between the proposed
correlation and the experimental data. The different
values of the constant Cy in Egs. (24) and (25) indicate
the lesser importance, from the standpoint of heat
transfer, of inertial effects in turbulent flows than in
laminar flows. In general, the value of Cj is expected to
be closer to one in the laminar case and an order of
magnitude less in the turbulent case. Unlike the laminar
case, there is little data in the literature for the turbu-
lent case. Therefore, new experimental results for both
low- and high-Prandtl-number fluids may enhance the
correlation proposed for the turbulent region by
yielding slightly more accurate values of the Cy and C,
coefficients.

4. Conclusions

A dimensionless number, Iy ~ Ra*/(1 + Pr™'), was
introduced as a fundamental dimensionless parameter
for the correlation of heat transfer in natural convection
flows driven by an imposed heat flux. Heat transfer
correlations of the form Nu ~ HIQ/5 and Nu ~ H1Q/4,
which apply to all fluids, were predicted for laminar and
turbulent convection, respectively, using boundary layer
and microscale arguments. Comparison of the proposed
correlations with existing experimental data showed
good agreement.
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